SentiME++ at SemEval-2017 Task 4: Stacking State-of-the-Art Classifiers to Enhance Sentiment Classification

نویسندگان

  • Raphaël Troncy
  • Enrico Palumbo
  • Efstratios Sygkounas
  • Giuseppe Rizzo
چکیده

In this paper, we describe the participation of the SentiME++ system to the SemEval 2017 Task 4A “Sentiment Analysis in Twitter” that aims to classify whether English tweets are of positive, neutral or negative sentiment. SentiME++ is an ensemble approach to sentiment analysis that leverages stacked generalization to automatically combine the predictions of five state-of-the-art sentiment classifiers. SentiME++ achieved officially 61.30% F1score, ranking 12th out of 38 participants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SentiME++ at SemEval-2017 Task 4A: Stacking State-of-the-Art Classifiers to Enhance Sentiment Classification

In this paper, we describe the participation of the SentiME++ system to the SemEval 2017 Task 4A “Sentiment Analysis in Twitter” that aims to classify whether English tweets are of positive, neutral or negative sentiment. SentiME++ is an ensemble approach to sentiment analysis that leverages stacked generalization to automatically combine the predictions of five state-of-the-art sentiment class...

متن کامل

A Replication Study of the Top Performing Systems in SemEval Twitter Sentiment Analysis

We performed a thorough replicate study of the top performing systems in the yearly SemEval Twitter Sentiment Analysis task. We highlight and discuss differences among the results obtained by those systems that have been officially published and the ones we are able to compute. Learning from the studies being made on the systems, we also propose SentiME, an ensemble system composed of five stat...

متن کامل

Amobee at SemEval-2017 Task 4: Deep Learning System for Sentiment Detection on Twitter

This paper describes the Amobee sentiment analysis system, adapted to compete in SemEval 2017 task 4. The system consists of two parts: a supervised training of RNN models based on a Twitter sentiment treebank, and the use of feedforward NN, Naive Bayes and logistic regression classifiers to produce predictions for the different sub-tasks. The algorithm reached the 3rd place on the 5-label clas...

متن کامل

SINAI at SemEval-2017 Task 4: User based classification

This document describes our participation in SemEval-2017 Task 4: Sentiment Analysis in Twitter. We have only reported results for subtask B English, determining the polarity towards a topic on a two point scale (positive or negative sentiment). Our main contribution is the integration of user information in the classification process. A SVM model is trained with Word2Vec vectors from user’s tw...

متن کامل

NileTMRG at SemEval-2017 Task 4: Arabic Sentiment Analysis

This paper describes two systems that were used by the NileTMRG for addressing Arabic Sentiment Analysis as part of SemEval-2017, task 4. NileTMRG participated in three Arabic related subtasks which are: Subtask A (Message Polarity Classification), Subtask B (Topic-Based Message Polarity classification) and Subtask D (Tweet quantification). For subtask A, we made use of our previously developed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017